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Abstract. A companion paper by Andreassen et M. (this issue) introduced and used 
a nonlinear, compressible, spectral collocation code to address the relative evolutions 
of two-dimensionM motions obtained in two- and three-dimensionM simulations of 

gravity wave breaking. That study illustrated the effects of instability on the 
wave field and mean flow evolution and suggested that two-dimensionM models are 
unable to fully describe the physics of the wave breaking process. The present paper 
examines in detail the structure, evolution, and energetics of the three-dimensionM 
motions accounting for wave instability as well as their associated transports of 
momentum and heat. It is found that this instability comprises counterrotating 
vortices which evolve very rapidly within the convectively unstable region of a 
breaking wave. Instability scales are selected based on wave geometry and vortices 
are elongated in the streamwise direction (horizontal wavenumber in the spa,nwise 
direction) and result in the rapid collapse of superadiabatic regions within the wave 
field. The resulting spectra show clearly the transition from gravity wave forcing 
of harmonics of the incident wave to instability onset and evolution. Fluxes of 
momentum and heat by the instability reveal the manner in which the gravity wave 
amplitude is constrained and the influences of instability on the wave transports 
of these quantities. The breakdown of the instability structure and its evolution 
toward isotropic smMl-scMe structure is the subject of the companion paper by Islet 
et M. (this issue). 

Introduction 

In a companion paper by Andreassen et al. [this is- 
sue], we compared the influences of two- and three- 
dimensional (2-D and 3-D) instabilities on the evol- 
ution and amplitude of a gravity wave that became 
convectively unstable due to upward propagation in a 
density-stratified atmosphere. When motions were con- 
fined to the plane of wave propagation, instability took 
the form of spanwise-uniform rolls within regions of con- 
vective/shear instability that evolved relatively slowly, 
persisted for long times, and caused a systematic ex- 
traction of energy from the incident wave field. Because 
of the gradual evolution of these structures the incident 
wave field maintained amplitudes well in excess of those 
required for convective instability, yielding large verti- 
cal fluxes of wave energy and momentum. 
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Simulations that permitted 3-D instability structures, 
in contrast, exhibited a rapid instability growth, strong 
constraints on the incident wave amplitude, and much 
reduced vertical fluxes of wave energy and momentum 
in and above the region of wave breaking. As a conse- 
quence we concluded that 2-D simulations appear un- 
able to capture the essential physics of the wave break- 
ing process. The purpose of this paper is to describe 
in detail the structure, evolution, and energetics of the 
instability that accounts for wave saturation in the 3-D 
evolution. 

We begin by displaying the effects of 3-D instabil- 
ity in the potential temperature field, both with time 
and height, in section 2. These illustrations emphasize 
the departures of the 3-D evolution from that occurring 
in 2-D and reveal the complexity of the motion field 
accompanying wave instability. The velocity and vorti- 
city fields associated with the 3-D instability structure 
are discussed in section 3 and reveal that the instabil- 

ity comprises counterrotating vortices which evolve very 
rapidly due to convective instability within a breaking 
wave. Horizontal 2-D spectra are presented in section 
4 and exhibit both the forcing of harmonics of the in- 
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cident wave with no transverse (ky 7• 0) structure and 
the onset and evolution of instability at large transverse 
wavenumbers. The evolution and sources of instability 
energy are examined in section 5, while section 6 pro- 
vides a discussion of the fluxes of momentum and heat 

by the instability structures. The conclusions of our 
study are presented in section 7. 

Evolution of the Motion Field 

Our 3-D gravity wave simulation was performed in 
stacked domains with dimensions (4,2,4)H and (4,2,1.5) 
H, with the lower (larger depth) domain used for grav- 
ity wave excitation and the upper domain used to ex- 
amine wave instability at higher (isotropic) resolution. 
Gravity wave propagation was in the x direction with 
an intrinsic frequency in the lower domain of co - 
•r7N/10•/7 - 1 ~ N/v•, where N is the buoyancy fre- 
quency. A shear flow in the upper domain was imposed 
to confine wave instability to the interior of this domain 
and resulted in an intrinsic frequency at the breaking 
level of co ~ N/10. The wave motion was forced for ~ 
3 wave periods as described by Andreassen e! al. [this 
issue], and wave instability was seeded by addition of 
a 3-D noise spectrum and evolved following attainment 
of convective instability within the wave field after ces- 
sation of the wave forcing in the lower domain. The 
discussion in the remainder of this paper refers, for con- 
venience, to quantities nondimensionalized by the den- 
sity scale height H, the sound speed c• - •/7gH, and 
a time scale Hick. 

To illustrate the evolution of the motion field and the 

initial development of instability, we show in Plates 1 
and 2 the temporal and spatial variations of the po- 
tential temperature field at the site of wave instability 
in a reference frame moving with the horizontal phase 
speed of the forced wave motion. Plate i displays the 
structure of a constant potential temperature surface at 
a height that intersects the site of primary instability 
within the wave field at t - 62.5, 65, 67.5, 70, 72.5, 
and 75. Plate 2 illustrates the vertical structure of the 

motion field with surfaces of constant potential temper- 
ature spanning the instability at t - 70. 

These figures reveal a 3-D and highly complex evol- 
ution of the wave field, with the primary, initially 2-D 
wave becoming increasingly distorted by an instability 
structure which appears to be aligned along the plane 
of wave propagation (a horizontal wavenumber in the 
spanwise direction). At several transverse locations the 
wave front appears to be buoyed up and retarded by the 
instability, while at intermediate locations the fluid is 
advanced and driven downward. Relative fluid motion 

beneath the upward displacements is opposite to that 
of wave propagation (wave propagation is toward the 
viewer and positive x), leading to long tongues of fluid 
extending rearward of the mean wave structure. Fluid 
that is advanced ahead of the mean wave structure by 
the instability is seen to splash back down and gen- 
erate smaller-scale motions and additional structures 

elongated in the streamwise direction. Viewing these 
fields from below (not shown) also reveals long filaments 

of high potential temperature fluid looping around the 
regions of splashing and extending to large distances 
behind the wave front. Finally, the wave front in the 
temporal evolution shown in Plate 1 is seen to remain 
at the same location with time because of our chosen 

reference frame. However, the small-scale structures ex- 
cited by the nonlinear wave breaking process are seen 
to be advected rearward relative to the incident wave as 

they become decoupled from the primary wave motion 
(see the splashing structures at t = 70 to 75 in Plate 1). 

Small-Scale Structures 

We now consider the small-scale motions that account 

for the observed structure in the potential temperature 
surfaces in Plates i and 2. These motions are illus- 

trated with eddy (ky • 0) 3-D velocity vectors confined 
to vertical and horizontal planes intersecting the insta- 
bility structure at the wave front at t - 65 in Plate 3. 
The vector field in the vertical plane reveals that each 
region where the wave front is buoyed up relative to the 
mean (ky = 0) structure contains two counterrotating 
cells, with upward motions at the center and downward 
motions at the edges, corresponding closely to the dis- 
placements noted in the above discussion. There is, in 
addition, a two-cell structure in the vector field in the 
horizontal plane in each region which shows that there 
is motion (1) inward (toward negative x) beneath the 
wave front where the vertical motion is upward and (2) 
outward (toward positive x) where the vertical motion 
is downward. 

These fields reveal an instability structure sugges- 
tive of the longitudinal rolls observed in sheared con- 
vection [Busse and Clever, 1979; Clever and Busse, 
1992] and also exhibiting similarities to the counter- 
rotating vortices observed to arise in the evolution of 
unstable shear flows in laboratory experiments [Brow- 
and and Troutt, 1980, 1985; Breidenthal, 1981; Jimenez, 
1983; Bernal and Roshko, 1986; Lasheras et al., 1986]. 
In sheared flows, streamwise vorticity appears to arise 
from the "translative instability" examined by Pierre- 
humbert and Widnall [1982] and depicted by Lasheras 
e! al. [1986]. Subsequent theoretical and modeling stud- 
ies by Nagala and Busse [1983], Klassen and Peltier 
[1985], and Metcalfe et al. [1987] appear to support 
these conclusions. Related efforts for a breaking wave 
environment by Clark and Farley [1984], Winters and 
Riley [1992], and Winlets and D'Asaro [1993] have pro- 
vided evidence of an instability structure with several 
similarities but also important differences. 

To examine the instability structures more quanti- 
tatively, we present in Plate 4 the same evolution dis- 
played in Plate i but with positive and negative con- 
tours of the x component of vorticity, (• = Ow/Oy- 
Ov/Oz, included to illustrate the development and ef- 
fects of these structures. These images show the vortex 
pairs to evolve within and remain closely aligned with 
the convectively unstable portion of the wave field at 
early times in the instability evolution. As discussed 
above, each upward displacement of the wave front cor- 
responds to a vortex pair, with upward motions at the 
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Plate 1. An isosurface of potential temperature within the region of primary wave breaking for 
the three-dimensional gravity wave simulation at the nondimensional times shown. 

center and downward motions at the edges. Rearward 
motion of the fluid (toward negative x) beneath each 
vortex pair and forward motion between adjacent vor- 
tex pairs also implies advection of vorticity in a manner 
suggestive of the "translative instability" of Pierrehum- 
bert and Widnall [1982] and the laboratory observations 
of shear flows cited above. Unlike the shear flow insta- 

bility, however, the vortices are initiated along the phase 
of the wave motion where convective overturning first 
becomes significant. Thereafter, they intensify rapidly 

and expand along the unstable phase of the wave until 
they occupy more than a full cycle of the motion field. 
There is, in particular, no evidence in our simulation 
that the streamwise vorticity arises due to undulation 
of initially spanwise vorticity. 

The vortices occupy nearly the full depth of the un- 
stable region and remain approximately circular through- 
out their early evolution, suggesting that their vertical 
and horizontal scales are dictated largely by the geom- 
etry of this region. At the early stages of instability, 
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Plate 2. As in Plate 1 but for equally spaced surfaces .spanning the region of wave instability at 
t=70. 

there are three dominant vortex pairs across the wave 
field because of the large depth over which the wave 
is unstable. At later times and greater heights, how- 
ever, the number of vortex pairs increases due to the 
decreasing depth of the unstable portion of the incident 
wave field and the preferential growth of disturbances 
at larger Ikyl (see the isosurfaces at greater heights in 
Plate 2). Examination of Plate 2 also reveals the vortex 
structures to be confined to the convectively unstable 
region within the wave field during early stages of the 
evolution, suggesting that their initial transports of mo- 

menrum and heat occur primarily within this region. 
Finally, the instability structures observed in this 

simulation occur at scales very much larger than the 
model resolution and the scale at which the spectral 
viscosity achieves nonzero values, suggesting that they 
likely represent the preferred mode of instability at this 
stage in the wave field evolution. Additionally, we note 
that a parallel simulation in which the noise variance 
was increased by 5•5 times yielded a virtually identical 
instability structure but which was advanced in time 
by At ~ 5 due to the more energetic excitation. Thus 
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65. O0 

65. O0 '-. .-. 

Plate 3. As in Plate 1 within the region of primary wave breaking with three-dimensionM 
perturbation velocity vectors in (a) vertical (y,z) and (b) horizontal (x,y) planes at t = 65. 
Vectors are color coded by the magnitude of the transverse (y) component with maximum positive 
values maroon and maximum negative values red. 

we are confident that the results presented here provide 
an accurate view of gravity wave breaking and insta- 
bility at representative wave scales and high intrinsic 
frequencies. 

Spectral Evolution of the Motion Field 

We consider in this section the spectral character of 
the 3-D motion field to identify the scales of the domi- 
nant responses, their evolution with time and altitude, 

and the distinctions between forced motions and in- 

stability structures. To do this, we first present one- 
dimensional (I-D) energy-content spectra (kE(k)) of 
kinetic energy in x and y as functions of time. We 
then show 2-D (k•,,k•) spectra of the motion field to 
display more clearly the discontinuous nature of the en- 
ergy transfer to instability scales. 

One-Dimensional Spectra 

The evolutions of the k• spectrum for ku - 0 and 
the k• spectrum for k• y• 0 of kinetic energy, averaged 
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Plate 4. As in Plate 1 but including isosurfaces of zonal vorticity with blue positive and red 
negative for I•z[- 2. 

over 0.2 _< z2/z2,o _< 0.6, where z2 and z2,0 are the 
nondimensional height and domain depth for the upper 
domain, are shown in Figure 1. As in the 2-D results de- 
scribed by Andreassen el al. [this issue], the 1-D spectra 
exhibit an initial excitation of the harmonics of the in- 

cident gravity wave at k• - 0 (compare with Figure 3 of 
that paper). Like the 2-D simulation, the kinetic energy 
is dominated at small Ik•[ by the horizontal component 
of the motion field; and as in the 2-D simulation, the 
2-D (k• = 0) structures in the 3-D simulation exhibit a 
systematic transfer of wave energy toward smaller scales 

in response to nonlinear wave and instability processes. 
Unlike the 2-D simulation, however, there is only a weak 
tendency in the 3-D simulation for energies to increase 
at higher wavenumbers and later times. 

In contrast to the k• spectral evolution the k• spec- 
tra display a discontinuous (in ku) transfer of energy to 
and an explosive growth of energy at Ik•l ,,, 27r to 57r 
(corresponding to transverse wavenumbers 2 to 5) at 
early times in the instability evolution. These transfers 
occur prior to the excitation of motions at larger k• and 
ku - 0 in the 2-D evolution and are associated with the 
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growth and wave breakdown with 2-D (k•, kv) spectra of 
kinetic energy averaged over the same heights as above 
in Figure 2 at t - 60, 65, 70, and 75. The wavenumbers 
in each direction are nondimensional, and the common 
Nyquist wavenumbers in k• and k v are indicative of . 

equal model resolution in each direction. These spectra 
show the initial expansion of wave energy from the in- 
cident motion at k• = 4-rr/2 (wavenumber 1) to larger 

- Ikl and k u - 0. Emergence of the vortex structures 
following the onset of instability then results in a dis- 
continuous (in kv) transfer of energy from the k v = 0 
structures to the instability scales at intermediate Ikul. 
The spectral description of the subsequent instability 
evolution and the transition to smaller, more isotropic 

100 scales is presented in the companion paper by Islet et al. 
[this issue]. 

Another view of the wave and instability evolution 
is provided by 2-D (kv,k,) spectra of kinetic energy 
shown in Figure 3 at the same times as above and av- 
eraged over all x. Note, however, that the k, spectra 
are expressed in terms of Chebyshev polynomials rather 
than Fourier harmonics and thus do not represent a 
unique relationship to different scales of motion. At 
early times, spectral energy is confined to the smaller 

- Ik, I at k v - O. But as the instability structures develop, 
there is again a transfer of energy from the k u - 0 mo- 
tions discontinuously to }kul ~ }kzl ~ 2rr to 5rr (wave- 
numbers of ~ 2 to 5). As the simulation progresses, the 
distribution of energy remains approximately isotropic 
in k u and k, but expands to larger I•1)in response 

100 to the smaller unstable layer depths observed to evolve 
at later stages of the wave field evolution. 
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Figure 1. One-dimensional (a) k. and (b) k u energy- 
content spectra of kinetic energy at t - 40, 150, 60, 70, 
80, and 90 averaged over 0.2 < z2/z2,o < 0.6. 

3-D velocity fields and vortical structures seen to dis- 
tort the potential temperature surfaces in Plates i to 4. 
At later times (t > 70), significant eddy kinetic energy 
occurs at wavenumbers extending from Ikyl ~ 2•r to 
10rr (transverse wavenumbers of 2 to 10) due to vortex 
breakdown and the continuing evolution toward smaller 
scales of motion. The decay of energy at larger wave- 
numbers is due to our spectral viscosity scheme included 
to avoid aliasing near the Nyquist wavenumbers. 

The instability growth in the 3-D simulation is seen to 
limit the incident wave amplitude much more severely 
than in the 2-D simulation, as noted in the discussion 
of the 2-D and 3-D ky - 0 results by Andreassen el al. 
[this issue]. Not seen in Figure 1, but apparent from the 
vorticity contours displayed in Plate 4, is the occurrence 
of the predominant kinetic energy of the instability at 
small Ik•l because of their elongated streamwise and 
gradually sloping structure in this direction. This fea- 
ture of the instability structure is revealed more clearly 
in the discussion of 2-D spectra below. 

Two-Dimensional Spectra 

The spectral evolution of the wave and instability 
field is displayed during the early stages of instability 

Instability Energetics 

The energetics of the instability structures are exam- 
ined by evaluating the kinetic energy of the eddy field 
(ky • 0) and the different terms that contribute to eddy 
kinetic energy production and loss. To form an eddy ki- 
netic energy equation, we must first separate the mean, 
2-D wave, and 3-D eddy structures. This is done by 
writing the total velocity, density, and pressure fields as 
the sum of three terms, 

r)(x,y,z,t) -- ½(z, t) + r)(x,z,t) + ½'(x,y,z,t), (1) 

where 

xoYo r)(x, y, z, t)dxdy (2) 

•(x, z, t) - •oo r)(x, y, z, t)dy - r)(z, t). (3) 
Products of perturbation quantities averaged in y are 
denoted 

t 1 f0 yø (½• c•)(x, z, t) -- •oo c• (x, y, z, t)c•(x, y, z, t)dy 
(4) 
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Figure 2. Two-dimensional (k•, kv) spectra of kinetic energy at t - 60, 65, 70, and 75 averaged 
over 0.2 < za/za,o < 0.6 showing the initial transfer of energy to larger Ik•l at k s = 0 and 
subsequently to intermediate [ku[ at small I•1. 

to distinguish them from the wave quantities, ½, with 
k•=O. 

Eddy Kinetic Energy Equation 

With the above definitions, the nondimensional eddy 
kinetic energy averaged in y may be written 

1 •o yø 1 (E') - •Yo P•'•Y - •(P + •)0'"•) (5) 

where summation over repeated indices is assumed and 
we have neglected triple correlations of eddy quanti- 
ties. For-reference the corresponding expressions for 
nondimensional eddy potential and internal (or elastic) 
energies are 

I fo yø p 0'):• (P') - •Yo 7 - 1 (•' dy- 
lp+,a (0 '=) 
•7- 1(•+•), (6) 

1 fo yø P P')ady- ]p+,a (p'2) 
(7) 

An equation describing the rate of change of the eddy 
kinetic energy is then obtained from equations (1) of 
Andreassen et al. [this issue] and given by 

o o o 

o--/(•') + (u + a). v(•') + •(p'•,') + •(p'w') 
= -(p + ,a)O,'•,'•) • - (p +,a)(w'•,'•)•(• + •,) 

+(p'V. u') - (p'w')g - dissipation terms, 
(s) 

with the same assumptions as above. 
The terms on the left-hand side of equation (8) are 

the local rate of change and advective change of 
and the energy flux (or pressure work) contributions. 
The terms on the right-hand side of equation (8) in- 
clude the source/sink terms due to mean and wave wind 
shear, a pressure-source term expressing conversion be- 
tween eddy kinetic and internal energies, a buoyancy 
term representing conversion between eddy kinetic and 
potential energies [Gill, 1982; Pedlosky, 1987], and the 
spectral viscosity described by Andreassen et al. [1993]. 
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Figure 3. As in Figure 2, but for the two-dimensional (ky, kz) spectra showing the energy 
transfers to smaller scales in y and z. The spectra here are averaged in x. 

Evolution of Eddy Kinetic Energy 

The evolutions of the domain-averaged eddy kinetic 
energy in the 2-D and 3-D simulations were presented 
in Plate 1 and Figure 7 of Andreassen et aL [this issue]. 
There it was shown that the 3-D instability evolved 
much more rapidly and was significantly more effective 
at limiting the incident gravity wave amplitude than 
was the 2-D instability. Our intent here is to look at 
this eddy kinetic energy evolution in the 3-D simulation 
in greater detail by considering both its growth within 
the unstable regions and its decay once these vortex 
structures have been advected into the stable portion 
of the motion field. We consider only the evolution 
and energetics of the coherent vortex structures in this 
paper, however. Their subsequent evolution and break- 
down to isotropic, small-scale structures is addressed in 
the companion paper by Islet et al. [this issue]. 

The distribution of eddy kinetic energy within the 
gravity wave field is shown at t = 60, 65, 70, and 75 in 
Figure 4. Comparison of these distributions with the 
2-D potential temperature profiles presented by Andre- 
assen et al. [this issue] and reference to Plate 4 of this 

paper show the eddy kinetic energy to be generated and 
initially confined within the convectively unstable por- 
tion of the gravity wave field, consistent with the 3-D 
mountain wave study by Clark and Farley [1984]. Vor- 
tex structures continue to develop and elongate within 
the unstable portion of the wave field as this extends 
through the wave at a constant phase, due to continued 
vertical propagation and compression of vertiaal scales. 
The vortices (and eddy kinetic energy) fail to propagate 
with th'e incident wave motion, however, and instead 
are advected with the local fluid motion into the stably 
stratified portion of the wave field where their growth 
ceases. This allows new vortices to form within the 

unstable regions, leading to vortex structures that are 
stacked in the vertical direction and eventually occupy 
the entire region of wave breaking (see the late-time ev- 
olution addressed in the companion paper by Islet et al. 
[this issue]). Because of the rapid growth of eddy kinetic 
energy within the unstable regions, however, maximum . 
values remain closely aligned with the sites of convective 
or dynamical instability. 

The advection of energetic vortex structures out of 
the region of convective instability, and the dynamical 
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Figure 4. Cross sections in the (x, z) plane of eddy kinetic energy {E') at t - 60, 65, 70, and 
75. Contour intervals are 5 x 10 -6 (zero not shown), with those at t - 60 smaller by a factor 
of 5. The maximum eddy kinetic energies occur at late times following wave collapse and shear 
instability. 

instability at lower levels and later times, have impor- 
tant implications for mixing and transport processes in 
the atmosphere. The breakdown of these vortex and 
instability structures and their transition to isotropic 
turbulence is addressed by Islet e! al. [this issue]. That 
study suggests that the induced turbulence will lead 
to significant vertical transports due to wave breaking, 
with implications for the relative efficiency of turbulent 
mixing of momentum and heat [Fritts and Dunkerton, 
1985; Coy and Fritts, 1988; Mcintyre, 1989]. We ex- 
pect, however, that this mixing efficiency will also de- 
pend on the incident wave structure and the relative 
evolutions of eddy structures within and outside of con- 
vectively unstable layers. Thus an assessment of this 
mixing and the implied turbulent Prandtl number based 
on our model results will be deferred until we have per- 
formed simulations to longer times and for other wave 
breaking geometries. 

Sources of Eddy Kinetic Energy 

We anticipate, on the basis of the stability analysis 
by Winters and Riley [1992] and studies of longitudi- 
nal rolls in Rayleigh-Benard convection, that a major 
source of eddy kinetic energy will be the buoyancy term 
because the streamwise rolls are a manifestation of a 
convective instability of the incident gravity wave mo- 
tion. Nevertheless, the large shears present in the mean 
and gravity wave motion fields may also contribute to 
the creation of eddy structures, while the pressure- 
source term cannot be discounted without evaluation 

because it represents a conversion from eddy internal 
to eddy kinetic energy. 

To assess these various eddy kinetic energy sources 
and sinks, we evaluate each term locally and averaged 
throughout the upper domain. The domain-averaged 
values are shown as functions of time in Figure 5 and 
reveal that the buoyancy term is indeed a major source 
of eddy kinetic energy prior to t '-• 70. Wave and mean 
shear terms also contribute to the generation of eddy ki- 
netic energy of the vortex structures due to the strong 
shears occurring at the lower edge of the convectively 
unstable region at t ,-, 60 to 70. After the initial wave 
collapse (t > 70), however, the dominant source of eddy 

Eddy kinetic energy sources/sinks 
1.0 ....... k, ' ' 

/ • 
/ -• 

0.8- / \ 

0.6 / '• 

,- //,' • X 
o 0.4 
o 
o 

o 0.2 

0.0 

-0.2 

-0.4 , , , 

55 40 45 50 55 60 65 70 75 80 85 90 
time 

Figure 5. Eddy kinetic energy source/sink terms av- 
eraged throughout the upper domain as functions of 
time. The three curves show the buoyancy (solid), ver- 
tical shear (long dashed), and horizontal shear (short 
dashed), respectively. 
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kinetic energy is the strong vertical shear of the hori- 
zontal motion field at lower levels associated with very 
small local Richardson numbers in this region (see the 
discussion of this feature by Islet et al. [this issue]). The 
major contributor to each shear term is the zonal (x) 
component because of the dominance of wave variance 
by fi and of eddy variance by u •. Relative to the buoy- 
ancy and shear terms, the pressure-work terms con- 
tribute very little to the creation or destruction of eddy 
kinetic energy because they represent boundary effects, 
while the eddy structures have evolved apart from such 
influences. Likewise, the pressure-source term is small 
because of the very small magnitude of the eddy inter- 
nal energy available for conversion (see below). 

Contours of the buoyancy, vertical shear, and hori- 
zontal shear source/sink terms in the (x, z) plane are 
shown at t - 60, 65, 70, and 75 in Figures 6 to 8. 
Note that the contour intervals are the same for each 

figure, but are smaller by a factor of 5 at t - 60 in or- 
der to display the structure with similar resolution at 
each time. Figure 6 shows the buoyancy term to lead 
to eddy kinetic energy creation within the convectively 
unstable regions at early times and to its destruction 
within the stably stratified fluid outside these regions 
at later times, as suggested by the domMn-averaged re- 
sults in Figure 5. In contrast, the vertical and horizontal 
shear terms act as both sources and sinks of eddy ki- 
netic energy at early times but contribute preferentially 
to generation due to the large shears at lower levels. The 
effects of the shear terms for t •_ 70 are partially offset- 
ting, with corresponding (but opposite) source and sink 
regions, but with the source terms larger in magnitude 
reflecting the net generation of eddy kinetic energy by 
the strong wave and mean shears at lower levels and 
later times. 

Evolution of Wave and Eddy Kinetic, Potential, 
and Internal Energies 

Vertical profiles of kinetic, potential, and internal en- 
ergy for the 2-D (ky - 0) and 3-D (ky • 0) wave and 
eddy structures are displayed at t - 50, 60, 70, 80, and 
90 in Figure 9. These profiles reveal the energy in the 
2-D fields to be approximately equipartitioned between 
kinetic and potential, with some oscillation between the 
two components in both space and time, due to wave 
superposition. At early times the major contribution 
is due to the incident wave as it evolves in the strong 
mean shear at lower levels. As energy is transferred to 
harmonics of this wave structure, however, the incident 
wave energy decays and the primary contribution at 
later times occurs in response to the strong shears and 
dynamical instability induced by the incident wave mo- 
mentum transports at earlier times (see Figures 8 and 
9 of Andreassen et al. [this issue]). The internal energy 
within the 2-D motion field, by contrast, is smaller by 
a factor of ~ 100 and clearly makes almost no contri- 
bution to the overall wave field energetics. 

Energy in the 3-D motion field arises initially in the 
potential energy component in two distinct height in- 
tervals (see Figure 9). This component achieves a max- 
imum at t • 60 and spreads vertically throughout the 
region of wave instability thereafter. The eddy kinetic 
energy, in contrast, is initially much smaller than the 
eddy potential energy but surpasses it at t ~ 65 and re- 
mains the larger component to late times. Eddy inter- 
nal energy, like the 2-D internal energy, remains ~ 100 
times smaller throughout the evolution. 

It is apparent from the small internal energies in the 
2-D and 3-D motion fields displayed in Figure 9 why the 
pressure-source term in the eddy kinetic energy equa- 

1.00 

0.75 

0.50 

0.25 

0.00 

1.00 

0.75 

0.50 

0.25 

0.00 

t- 60 
, 

Buoyancy 

! 

t- 70 

[erm 

t-65 

t-75 

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 
x/x x/x 

o o 

Figure 6. Buoyancy source/sink term of eddy kinetic energy as a function of (x, z) at t - t30, 
65, 70, and 75. Contour intervals are 2.5 x 10 -6 with positive (negative) solid (dashed) and those 
at t - 60 smaller by a factor of 5. 
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Figure ?. As in Figure 6, but for the vertical shear source/sink term. 

tion was found to be negligible earlier in this section. 
These results also have implications for the importance 
of compressibility in our simulation. Specifically, the 
negligible role of pressure variations in the wave and 
eddy fields at large and small scales suggests that the 
dynamical effects of compressibility are not important 
in the evolution of a breaking wave and the transition to 
small-scale turbulence even for motions with relatively 
high intrinsic frequencies. 

Instability Transports 

Eddy transports of momentum and potential temper- 
ature are assessed in our model results by computing the 

local and x-averaged values of {u'w') and (w'O'). The 
local transports are displayed with (x, z) cross sections 
at t- 60, 65, 70, and 75 in Figures 10 and 11. Pro- 
files of the averaged eddy fluxes are shown in Figure 
12. Eddy transports of energy are not displayed be- 
cause they are found to be negligible relative to wave 
(k v = 0) transports. 

Momentum Fluxes 

Eddy momentum fluxes arise largely in response to 
the local shear environment. In the absence of a mean 
shear, wave instability occurs near that phase of the 
wave motion in which the wave velocity is a maximum 
in the direction of propagation, suggesting that eddy 
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momentum fluxes should be small at this level. In our 
simulations, however, the eddy structures occur in the 
presence of significant wave and mean shears due to 
their large vertical extent (see Figure 9 of Andreassen 
et al. [this issue]). At early times, the dominant eddy 
momentum flux, lutwtl, is positive above and negative 
below the region of primary instability (upward and 
downward transports of positive x momentum), due 
to the negative and positive mean plus wave shears at 
these locations and times. Other components of the 
momentum flux, including (u'v t) and (v'wt), are also 
nonzero, due to asymmetries in the eddy structures, 
but are much smaller than (utw t) and produce negligi- 
ble changes in the mean motion field. The momentum 
flux profiles shown with solid curves in Figure 12 exhibit 
more simply the transition from transports due to vor- 
tex structures at early times to those due to dynamical 
instabilities of the local flow at later times. 

Heat Fluxes 

The eddy flux of potential temperature expressed as 
(w•8• / and shown at four times in Figure 11 is proper- 

Figure 9. Profiles of kinetic (solid), potential (long 
dashed), and internal (short dashed) energy for the (a) 
ky - 0 wave and (b) ky • 0 eddy motions at t = 50, 
60, 70, 80, and 90. The internal energy has been mul- 
tiplied by 100 in each case for comparison and clearly 
represents a small fraction of the total energy. 
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Figure 10. Eddy vertical transports of horizontal momentum per unit mass, (u•w•}, in the (x, z) 
plane for t - 60, 65, 70, and 75. Positive (negative) contours are solid (dotted) and contour 
intervals are 2.5 x 10 -4 (zero not shown). The momentum flux reverses sign initially due to the 
reversal of the large-scale shear across the unstable layer and is negative at later times due to 
dynamical instability at lower levels. 
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Figure 11. As in Figure 10, but for heat. Contour intervals are 1.6 x 10 -4. The initial positive 
heat flux acts to suppress the convective instability within the wave field, while at later times the 
heat flux is negative due to mixing of stably stratified fluid. 

tional to the buoyancy source/sink term in the eddy 
kinetic energy equation. The contours display more 
structure in this case, however, because the three ma- 
jor source/sink terms were plotted on a common scale 
for easy comparison. As discussed above, the dominant 
flux of potential temperature by the eddy structures is 
upward at early times as a result of the inverted verti- 
cal gradient within the convectively unstable layer. This 
positive flux persists to later times at upper levels where 
the vortex structures and regions of convective instabil- 
ity evolve more slowly. Where the vortex structures 
have already contributed substantially to stabilization 
of the initially unstable layer, however, the flux reverses 
and achieves maximum negative values approximately 
half the positive maximum reached earlier (see the tran- 
sition from t - 65 to 70 in Figure 11). 
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Figure 12. Profiles of eddy vertical momentum (solid) 
and heat (dashed) fluxes for t - 60, 65, 70, and 75. 

At lower levels of the flow where dynamical insta- 
bility contributes to eddy kinetic energy at later times 
(see Figure 5 at t > 70 and Figures 5 and 9 of Andreas- 
sen et al. [this issue]), the flux of potential temperature 
is primarily negative due to eddy structures evolving 
in a stably stratified environment. This evolution is 
seen more clearly in the flux profiles (dashed curves) 
in Figure 12. The net flux of potential temperature is 
therefore highly sensitive to the stage of the wave field 
evolution and plays different roles at different times. 

Summary and Conclusions 

We have presented an analysis of the structure, ev- 
olution, and energetics of the instability responsible for 
the breaking and saturation of a large-amplitude grav- 
ity wave in three dimensions. The instability comprises 
pairs of counterrotating vortex structures analogous to 
the longitudinal rolls in sheared Rayleigh-Benard con- 
vection. Vortex structures are aligned along the plane 
of wave propagation (a horizontal wavenumber in the 
spanwise direction), are confined during their initial ev- 
olution to the convectively unstable regions within the 
wave field, and resemble closely the spanwise structures 
(with streamwise vorticity) observed to develop in un- 
stable shear flows. Instability scales are selected based 
on the depth of the unstable layer and instability growth 
rates are large. 

The major sources of instability (eddy) kinetic energy 
are buoyancy, primarily at early stages of the evolution, 
and eddy fluxes of momentum in regions of strong wave 
and mean shears, primarily at lower levels and later 
times. These eddy fluxes cause a rapid collapse of the 
unstable layers and restoration of near-adiabatic gradi- 
ents within the wave field. Eddy energy flux (pressure 
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work) and pressure-source terms, in contrast, are neg- 
ligible relative to other contributions. Energy transfers 
occur initially within the wave field at Icy -0 through 
systematic nonlinear interactions as wave amplitudes 
increase. Following the occurrence of convective insta- 
bility, however, energy is transferred discontinuously to 
instability scales at transverse wavenumbers dictated 
by the depth of the instability. This transfer of energy 
to instability scales is reversed when eddy fluxes have 
largely stabilized the larger-scale flow. 

The three-dimensional simulation of wave breaking 
examined here differs dramatically from that occurring 
in the parallel two-dimensional simulation discussed by 
Andreassen et al. [this issue]. This suggests that 3-D 
studies are necessary to describe adequately the insta- 
bility structure accompanying wave breaking and its im- 
plications for wave amplitude limits, transports, spec- 
tral evolution, and turbulence generation and effects. 
2-D models with these instability effects suitably pa- 
rameterized may, nevertheless, describe wave effects and 
wave-mean flow interactions in more general applica- 
tions at larger scales. 
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